Monte Carlo Solution of Bond
Percolation Processes in
Various Crystal Lattices

By H. L. FRISCH, 5. B. GORDON, V. A. VYSSOTSKY, and
J. M. HAMMERSLEY t

(Manuseript received November 29, 1961)

We present the outline of an IBM 7090 machine program for the Monte
Carlo estimation of the percolation probability for a variety of space lattices.
The underlying theory is briefly summarized.,

I. STATEMENT OF THE PROBLEM

Percolation processes deal with the transmission of a “Auid” (dis-
turbance, signal, ete.) through a “medium’ (material, region, ete.)
against impediment by random irregularities situated in the medium.’
This paper considers the case where the medium is a regular erystal
lattice in two or three dimensions, consisting of “atoms” (the vertices
or sites of the lattice) and “*bonds” joining specified pairs of atoms. The
next section will specify the structure of the lattice more completely.
The fluid originates at one or more atoms of the lattice, called the source
atoms, and flows from atom to atom along the connecting bonds. How-
ever, each bond (independently of all other bonds) has a fixed proba-
hility p of being able to transmit fluid and a probability ¢ = 1 — p of
being blocked: these randomly situated blocked bonds constitute the
random impediments to the spread of the fluid. We write Py(p) for the
probability that the fluid will reach (or “wet”, as we shall say) more
than N other atoms besides the source atoms; and the problem is to
estimate P(p) = limy... Py(p). We do this by estimating Py(p) for a
suitably large value of N: it turns out that N ~ 2000 is sufficient in
many cases. The present paper deseribes the general organization of an
IBM 7090 program for obtaining a Monte Carlo estimate of Py(p).
The numerical results appear elsewhere.”

1 Oxford University, Oxford, England.

909

910 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1962

II. STRUCTURE OF THE LATTICE

We consider below the three-dimensional problem in such a way that
it contains as a special case the two-dimensional problem. A regular
three-dimensional lattice consists of a number of fundamental cells, all
identical apart from their position in space. Each cell is specified by
integer coordinates (x, y, z) representing its position in space (z,y,z = 0,
+1, £2, ---). Each cell contains a finite number of atoms, limited in
our IBM 7090 program to a maximum of eight atoms per cell, and
denoted by 4, B, --- | H.

In the problem, as originally posed in the previous section, some of
the bonds may be one-way (i.e., only able to transmit fluid in a specified
direction) while others may be two-way (i.e., able to transmit fluid in
either direction). It can, however, be proved theoretically that Py(p)
is unaltered if a two-way bond is replaced by two one-way bonds of
opposite directions. It is therefore enough to consider the case where all
honds are one-way bonds, and we confine ourselves to this case hereafter.

Let us write T(x, y, z) for the atom of type T(T = A, B, -+, H)
in cell (z, y, z). The lattice is regular in the sense that, if there is a
bond from 7T(x, y, z) to T*(x*, y*, 2*), then there is a bond from 7'(x +
Ly +mz4+n)toT*a*+ 1, y*+ mz*+ n)forany l,m,n =0,
+1, 42, - - - . Therefore we need only specify the terminal atoms reached
by each bond from each atom of the cell (0,9, 0). The program limits
the number of bonds from a given atom to a maximum of 12. There is
no restriction that distinet bonds from a given atom shall lead to distinct
terminal atoms; and thus we may, if we wish, have two or more bonds
in the same direction between a given pair of atoms.

The machine receives information about the lattice structure from a
series of input cards, having the format described below. To each atom
of the cell (0,0, 0) there is a “structure” card, followed perhaps by one
or two “continuation” cards. The format of a structure card is:

56

57-65
T(zxyz)

70-72
Tl

36| 37-45
, | Tlayz)

Columns
Contents

In such a card, T (in columns 15, 27, 37, 47, 57) stands for one of the
letters A, B, - -+ , H (not necessarily the same in each case); and each
of the symbols x, y, z is a signed integer. The entries in columns 5-13,
24-26, 36, 46, 56, 70-72 are in BCD (binary coded decimal). Instead
of the whole word STRUCTURE in columns 5-13, the single letter S in
column 5 will suffice. Columns 15-23 specify the atom of cell (0, 0, 0)
from which bonds lead to the atoms appearing in columns 27-35, 37-45,
47-55, and 57-65 respectively. Thus the structure and card provide for

46 | 47-55
T(xyz)

5-13 16-23 24-26 | 27-35
STRUCTURE | T(404040) | TO- | T(xyz)

MONTE CARLO SOLUTION 911

up to four bonds from the given atom of cell (0, 0, 0). If there are fewer
than four bonds, some of the T(xryz) will be left blank. The next four
(or fewer) bonds are similarly specified on a first continuation eard
with format:

57
CT1

27-65
Same format as structure card

70-72
cT2 -

Columns
Contents

The last four (or fewer) bonds appear on a second continuation card
with format:

1

276!

57 7 70
Same format as structure card

cr2 S

In both eontinuation cards, columns 5-7 and 70-72 are in BCD. If the
atom specified in columns 15-23 of the structure ecard has four or fewer
bonds from it, both continuation eards are omitted and we replace CT1
in ecolumns 70-72 by S in column 70 (in BCD); if it has between 5 and 8
(both inclusive) bonds from it, the second continuation card is omitted
and we replace CT2 in columns 70-72 by S in column 70. The final
strueture on continuation card is followed by an “end” card with END
(in BCD) in columns 5-7,

For example, the simple cubic lattice with a pair of one-way bonds
(one in each direction) between each pair of nearest-neighbor atoms is
specified by:

Columns
Contents

=1

STRUCTURE A(404040) TO- ACHIH0+0), A(H0+140), A(+0+0+1), A(—140+0) €T
cTl Al(F04+04+0) TO- A(40=140), A(+04+0-1) S
END

Similarly, the tetrahedral lattice (diamond erystal) with a pair of one-
way bonds in each direction between nearest neighbors is given by:
STRUCTURE A(+04040) TO- B(404+040), B(+14040), B(4+0+140), B(404+041) S

S B(+0404+0) TO- AH04040), A(—14040), A(+0-140), A(404+0-1) S
END

The two-dimensional cases arise when z = 0 identically on all cards.

11, INPUT TO THE MACHINE

The complete input to the machine consists of the program deck,
followed by (7) an identification card, followed by (77) a parameter
data card, followed by (i7i) a set of structure and continuation cards
(as described above), followed by (4v) an end card (as deseribed above).

The format of the identification card is:

Columns || 5-15 18-25
Contents || PERCOLATION | CRYSTAL

26-66 68-72
Name of crystal | PUNCH

912 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1962

These entries are all in BCD. If PUNCH appears in columns 68-72, the

output from the machine will appear on the printout and will also be

punched onto cards; if PUNCH is omitted from columns 68-72, the

output will appear on the printout but cards will not be punched.
The format of the parameter data card is:

25-28

e

Columns H 5-8
Contents RUNS
Columns 5-8, 13, 19-23, 31-37, 48 are in BCD. Columns 10-12 contain
a first run number; columns 14-16 contain a last run number: the
purpose of these two run numbers will be described presently. All run
numbers must be positive integers. Columns 25-28 contain the number
N, appearing as a suffix in the desired function Py(p). The maximum
value of N permitted by the program is 7000.

10-12 | 13 14—!6I 19-23
=+ | LINES

31-37 [39—17 48 | 49-57
SAURCES | T(zyz) , T(xyz)

IV. GENERAL CONDUCT OF THE CALCULATION

The calculation carried out by the machine is at first sight rather
different from the problem posed in the first section of this paper. The
change of formulation simplifies the calculation without affecting the
ultimate numerical answer.

The caleulation consists of a number of separate runs. In each individ-
nal run, independent random numbers n are assigned to each bond of
the lattice. Each 5 is uniformly distributed between 0 and 1. This process
of assigning 7-values to the bonds replaces the original process of block-
ing bonds, so that the question of a bond being blocked or not does not
arise in the reformulated process. Consider a connected path of bonds
Br, B2, -, B on the lattice, where the (necessarily one-way) bond
B: leads from the atom to which the preceding bond 8,y led (7 > 1).
Let m, m2, -+ , m be the p-values of the respective bonds 81, 82, -+ -,
8i . Define the p-value of this path to be the minimum of 71, 72, -+, 7 .
Next consider any atom other than a source atom. Define the y-value of
this atom to be the supremum of all path g-values, taken over all paths
which lead from some source atom to the given atom. Finally define ¢,
to be the largest number such that there are more than n atoms, other
than source atoms, whose y-values are equal to or greater than ¢, .

Now ¢, for any fixed n is clearly a random variable, depending upon
the several g-values assigned to bonds of the lattice. I’,(p), regarded as
a function of p, is the cumulative distribution function of the random
variable 1 — ¢, .’

The machine is programmed to caleulate ¢, for each run. Thus the
set of all runs provides a sample of values of 1 — ¢, , and the empirie

MONTE CARLO SOLUTION 913

distribution of this sample can be taken as an estimate of the required
function P,(p).

So far we have regarded n as a fixed integer. Actually, the output of
the machine on any one run is a table of ¢, as a funetion of n for all
n = N, where N is the number set on the parameter data card. Thus the

complete calculation provides estimates for P, (p) foralln = 1,2, --- |
Nandall0 = p = 1.
Succesive runs are numbered serially Ry, By + 1, --- |, Ry, where R,

is the first run number specified on the parameter data card, and R, is
the final run number specified on the parameter data card. Hence
R: — Ry + 1 is the sample size for each empirie distribution. The run
number Ry + 7 of the (¢ + 1)th mmn is used to trigger off the genera-
tion of random numbers 5 assigned to bonds in this run. Hence a run
may be repeated for checking purposes by repeating the run number;
but, if a fresh and independent sample of v, is desired, the parameter
data card must specify a set of run numbers which does not overlap the
set previously used. Since three decimal digits are available for run
numbers, the maximum sample size is 999. A sample of size about 100
is usnally adequate.

V. OUTPUT FROM THE MACHINE

The printout from the machine, also punched onto cards if ordered
on the identification eard during input, is as follows.

The printout begins with a copy of all input data (excluding the
program deck). Thereafter follows a table, whose columns are headed:

RUN NO. STATE e VALUE

Fach row of the table has an entry in each of these four columns. An
entry under RUN is the current run number R being computed (B, <
R = R,). The entries under N@. and ¢ VALUE are respectively n and
¢, , tabulated for 0 £ n £ N omitting any values of n such that ¢, =
€, (0 £ n £ N). Thus the only values of ¢, printed are new values
less than all preceding values in the run. (Clearly ¢, is a non-increasing
function n by virtue of its definition.) Such new values are indicated
by the prefix NEW. The value of ¢y is, on the other hand, prefixed by
FINAL and also suffixed by an asterisk to help in reading the output
quickly. The entry under STATE is cither FINISHED or T() BE
CONT., according to whether the run is complete or not. The only other
possible entry under STATE is INHIBITED: this is a safety device,
to be explained later. It means that certain technical cireumstances

914 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1962

TABLE I— EXTRACT OF PRINTOUT

RUN NO. STATE ¢ VALUE
23 518 T® BE CONT. NEW ¢ = .748
23 1000 FINISHED FINAL ¢ = 748«
24 0 TO BE CONT. NEW ¢ = .906
24 1 T0 BE CONT. NEW ¢ = .803
24 5 TO BE CONT. NEW ¢ = .791
24 11 T) BE CONT. NEW ¢ = .783
24 17 T BE CONT. NEW ¢ = .770
24 19 TO BE CONT. NEW ¢ = .762
24 20 TO BE CONT. NEW ¢ = .715
24 21 TO BE CONT. NEW ¢ = .711
24 1000 FINISHED FINAL ¢ = .T11%

(whose occurrence is extremely unlikely) have arisen to prevent com-
pletion of the run. In an inhibited run all values of ¢, in the printout
are valid: all that has happened is that n has been prevented from rising
beyond a certain value, at which instant the run is automatically dis-
continued.

The extract of the printout shown as Table I will help clarify matters.
It gives the end of the twenty-third and the whole of the twenty-fourth
run for a computation on the simple cubic crystal with N' = 1000. To
find the value of ¢, for a value of n not printed in the Table, take the
value of ¢ for the largest n less than the required n. In the above example,
¢g = 0.791 in run 24.

The machine stores values of ¢ as 9-bit binary decimals. Hence the
rounding error in ¢ is about 0.001 and not 0.0005.

VI. OUTLINE OF THE PROGRAM

What has been said so far contains everything that a user of this
program needs to know. What follows in the remainder of this paper
is an explanation of how the machine carries out the program, and is
intended for those who are interested in programming techniques.

The two main entities in any given run are (7) a number denoted by
¢, and (i) a so-called “wet list” of atoms. An atom is qualified for
membership on the wet list if it is a source atom or if its y-value is not
less than e. Normally the value of ¢ is held constant and the machine
recruits new members of the wet list. However, if a stage is ever reached
during a run where no further recruits can be found with the existing
value of ¢, then the machine reduces ¢ by an amount just sufficient to
ensure the existence of at least one fresh recruit. The run begins with
¢ = 1 and a wet list containing just the source atoms. Since a given

MONTE CARLO SOLUTION 915

atom in a given run has a given y-value (depending upon the g-values
assigned to bonds in that run), reduction of ¢ can never disqualify
existing membership of the wet list. Successively recruited members of
the wet list (other than source atoms) are numbered 0, 1, --- . A little
reflection will show that at the moment, when the member numbered n
is added to the wet list, the current value of ¢ must be ¢, . The run is
terminated as soon as the wet list contains N 4+ 1 members. Thus the
machine output is simply the result of printing any freshly reduced
value of ¢ against the number of the next member to be added to the
wet list.

This proeedure would be unworkable if the machine had to examine
all atoms of the lattice for this qualification to belong to the wet list.
What makes the procedure workable is the observation that there can
exist no qualified fresh recruits if the existing value of ¢ exceeds the
n-values of all bonds, which lead from some atom of the wet list to some
atom not in the wet list. Let us call such bonds the outgoing bonds of
the wet list. If the wet list has an outgoing bond whose p-value is at
least ¢, then this bond leads to an atom which is qualified for membership
of the wet list. If the value of ¢ has to be reduced, the new value of ¢
is the highest m-value of all existing outgoing bonds. Hence, at any
stage of the caleulation the machine need only examine the n-values
of the outgoing bonds of the currently existing wet list.

Information about the current status of the wet list resides in a block
of registers in the core storage of the machine, with three registers
(denoted by ¥, I/ + 1, ' 4+ 2) allocated to each atom of the list. We
write

= (r,y,2 T)=[11,11, 11, 3];
E+1=(X)=[36]; (1)
E+2= (¢ m =, 12 15];

to indicate that # contains four different quantities (denoted by x, y, z,
and 7' respectively) oceupying 11, 11, 11, and 3 bits of the 36 bits
available in a single register. The contents of £ + 1 and £ + 2 are
exhibited in a similar manner. If we wish to emphasize that we are
talking about the nth atom 4, (n = 0, 1, --- , N) in the wet list (ex-
cluding the source atoms of the wet list), we place n as a suffix to any
of the above quantities: thus

(K +2) = ($u, bu,). (2)

916 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1962

The symbols have the following meanings: (tu , ¥, z,) are the three
integer coordinates of the cell containing the atom A4, , and T, is the
type of the atom A, (T, = A, B,---, Hn the notation for erystal
structure). X, is a 36-bit pseudo-random number, generated according
to the multiplicative congruential recursive relation (low multiplication)

X, = g X, (mod 2%, (3)

where 8 is a permanently fixed odd integer, and the recursion is triggered
from the initial state

X =J(R) (4)

where f(R) is a fixed function of R, the run number of the run under
consideration. (R = R, + j in the (7 + 1)th run). The meanings of
¥, ¢, and = will be stated in a moment.

The lattice structure allows us to have up to 12 bonds leading from
each atom; and for the sake of exposition it is convenient to suppose
in the first place that each atom has a full complement of 12 bonds
from it. The atom A, thus requires 12 n-values for its 12 bonds: we
denote these by (5, 7., -+, 7.""). The quantity ¢ consists of 12
independent bits ¢, = (q&,,(“,cp,,w, ceey ¢H“3J) also corresponding to the
12 bonds. If an atom has fewer than 12 bonds from it, we put the cor-
responding ¢'” = 0 to signalize the absence of a bond. For a bond
actually present, we also put #'" = 0if it is known that this bond leads
to some atom already in the wet list. In all other cases, " = 1. Thue
all outgoing bonds from A, have é,'" = 1: the converse is not neces-
sarily true, since we may have a bond, which exists and which leads to
an atom already in the wet list (and is therefore not an outgoing bond),
although at the current stage of the calculation we have not yet dis-
covered that this bond leads to an atom in the wet list. Thus the quantity
represents a state of current knowledge. We define

(n, (1 (12) (12)
¥, = max (M Pu "7 5 M $n). (5)

To validate this definition we require that each 7" be a 9-bit number.
We achieve this by means of

(X.) = (" 2" "2 =109,9909)]

(X)) = (m”, 2", 0", 2) = 9,9,9,9,]

BX.) = (0", 2., 2.0 =09,9,9,9)]

(X)) = (7", 2. 0., 2) =19,9,9,9)]

where ? denotes a 9-bit number which is not used (because the terminal

(mod2™), (6)

MONTE CARLO SOLUTION 917

digits of pseudo-random numbers are too regularly distributed), and
where the congruential notation in (6) indicates low multiplication as
in (3).

VII. PROGRESSIVE CONSTRUCTION OF THE WET LIST

We are now able to describe recursively how the wet list is compiled.
In what follows, it is important to remember that the wet list consists
of both source atoms as well as recruited atoms in this list.

Suppose that the wet list is already partly compiled and that we have
reached o stage at which the current ¢ value has just heen reduced to
a new value. Starting at the beginning of the wet list, we successively
scan each atom in the order of the list. or each atom scanned we ask
first if its ¥-value is less than e. If ¢ < ¢, we pass to the next atom on
the list. If ¢ = ¢, we determine all values of ¢ such that "¢ = ¢:
these represent the only bonds which ean lead to an atom at present
qualified for membership of the wet list. Call such an atom a target
atom of the scanned atom. Noting the cell coordinates and the type
number of the scanned atom, we compute the cell coordinates and the
type number of each target atom of the scanned atom. We then look
through the wet list to see which of the target atoms do not belong to
the wet list, and we add to the end of the wet list all target atoms not
already on the wet list. With these new additions to the wet list, every
bond from the scanned atom to a target atom leads to an atom of the
wet list, and therefore we now set ¢'” = 0 for all values of 7 for which
we had ﬂ”'tf)(ﬁ = ¢. Next we recompute ¢ from (5). Of course the new
value of ¢ is less than ¢. Therefore in the scanning procedure we go to
the next atom in the wet list. Ultimately the scanning procedure will
reach the end of the wet list. At this stage, all ¢ in the wet list are less
than ¢. We therefore reduce ¢ to the largest ¢ in the wet list, and restart
the scanning from the beginning of the wet list. We continue this proce-
dure until we have recruited N 4 1 atoms to the wet list.

To assist in computing the new value of ¢ required at any reduction
of e, we make a small modification of the foregoing procedure. We define
a number ¢*, called the e-candidate. At the beginning of any scan, we
set ¢® = 0. Before leaving any scanned atom and proceeding to the
next one, we take max (¢, ¢*) to be the new value of ¢*. Thus when we
reach the end of the sean, e* equals the required new value of e.

VIII. WET LIST SEARCH

As deseribed above, we have to search through the wet list to decide
if a target atom is already in the list. To expedite this search we define

918 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1962

the modular type of an atom A, in the wet list to be the least non-
negative residue

by = &0 + Un + 2, (m()d 256)! (7)

and we dissect the wet list into 256 equivalence classes aecording to
their modular type. A target atom can only be in the wet list if it is its
own equivalence class, and hence it is sufficient to search just one
equivalence class in the wet list.

Suppose that A,y , Auw , -+, Auw are the atoms in the wet list
currently belonging to the equivalence class to be searched. We define
. , appearing in (1), by

T = n(j — 1). (8)

Thus we can scarch the equivalence class backwards; for at any stage
of the search, the w-value for the atom currently examined gives us the
address of the next atom to be examined. To start off this iteration,
the core storage holds a table, called the H-table, with 256 entries pro-
viding the values of n(k) for each equivalence class. When a new atom
has to be added to the wet list, we must write up its r-value: its =-value
is simply the entry (for the appropriate equivalence class) that is in
the H-table immediately before adding the new atom to the wet list;
and, immediately after adding this new atom to the wet list into address
n(k + 1), say, we enter n(k + 1) into the appropriate position of the
H-table in place of n(k).

IX. INHIBITION OF RUNS

Each of the coordinates z, y, z of a lattice cell is represented by an
11-bit integer, treated by the machine modulo 2048. Thus, effectively,
the lattice lies on a four-dimensional torus instead of the required three-
dimensional flat of four-dimensional Euclidean space. To remedy this
defect, we cut the torus on each of the three two-dimensional flats defined
by z = 0,y = 0, and z = 0 respectively. We place the source atoms in,
or in the immediate neighborhood of, the cell (1024, 1024, 1024); and
we set an inhibition flag if any cell coordinate becomes zero modulo 2048.

The run is allowed to proceed as before, after the inhibitor flag has
been set, up to such time as the machine calls for a new value of c. At
this instant, however, the inhibitor flag prevents the new value of ¢
being set, and instead terminates the run with the printout comment ¢
INHIBITED together with a point of the old value of c.

The net effect of this procedure is to allow the fluid to pass across the

MONTE CARLO SOLUTION 919

two-dimensional cuts in the torus, and even to complete circuits which
are not homotopic to zero. However, if such a circuit occurs, it may
imply an unnecessary reduction in ¢, or an unnecessarily large reduction;
and in that event the run must be terminated as a safety measure.
Nevertheless it is very unlikely, with the values of N used, that inhibi-
tion will be invoked; and in fact it has not been invoked on any run
calculated to date.

X. GENERATION OF PSEUDO-RANDOM NUMBERS

There is no point in ealeulating pseudo-random numbers which are
not going to be used. At the start of a run, all entries X, defined in (1),
are set with a negative sign. When the machine comes to scan any atom
in the wet list to look for possible outgoing bonds, it first asks if X is
negative, If X is negative, it replaces X by a positive pseudo-random
number X, , generated there and then by means of (3). If X is positive,
the machine knows that a pseudo-random number has already been
caleulated for this atom, and it does not change X, . Thus, as the prob-
lem requires, each individual pseudo-random number remains fixed
throughout a run.

XI. DELTA AND PHI TABLES

Consider the stage of the caleulation when the machine is scanning the
wet list and looking for the possible outgoing bonds from a particular
atom A to the corresponding target atoms. Let (z, y, z, ') denote the
cell coordinates and type number of 4 ; and suppose that we are con-
sidering the 7th bond from A (7 = 1,2, --- | 12) as a possible outgoing
hond to a target atom, whose cell coordinates and type number we
denote by (&', y', ', T"). Then

E' —FE= (7)) —(x,y,2,T) = A(T, 7) (9)

is a function of 7" and 7 only. We store A(T, 7) in relative location 167 +
1 of a block of 128 locations called the delta table. We can thus ealeulate
the coordinates of the target atom by entering the delta table and using
the addition

=K+ AT, 7). (10)

Similarly, the value of ¢ a target atom is a function ¢(7T, ¢), stored in
relative location 167" + 7 of a block of 128 locations called the phi table;
and this enables us to write ¢ into £’ 4 2 by a straight look-up proce-
dure.

920 THE BELL SYSTEM TECHNICAL JOURNAL, MAY 1962

The contents of the delta and phi tables are permanent settings com-
puted from the lattice structure data cards before starting the first run.

REFERENCES

1. Broadbent, 8. R., and Hammersley, J. M., Percolation Processes, ‘rystals and
Mazes. Proc. Camb. Phil. Soc., 68, 1957, p. 629.

2. Vyssotsky, V. A., Gordon, S. B., Frisch, H. L., and Hammersley, J. M., Phys.
Rev. 123, 1961, p. 1566; Frisch, H. L., Sonnenblick, E., Vyssotsky, V. A., and
Hammersley, J. M., Phys. Rev. 124, 1961, p. 1021; Frisch, H. L., Hammers-
ley, J. M., and Welsh, D). J. A, Phys. Rev., to be published.

3. Hammersley, J. M., Monte Carlo Solution of Percolation in the Cubic Crystal,
Compulational Methods in the Physical Sciences (hook), to be published.

